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Because people spend the majority of their time indoors and particles of outdoor origin infiltrate into
buildings with varying efficiencies, human exposure to outdoor particles often occurs indoors. Relying on
ambient measurements of particle concentrations alone can result in significant exposure misclassifi-
cation in epidemiological studies; however, there remains a need to improve fundamental knowledge of
the variation of particle infiltration across the building stock, particularly in residences. Therefore, this
work develops a Monte Carlo simulation tool to predict the statistical distribution of time-averaged size-
resolved indoor proportions of outdoor particles, or ‘infiltration factors’, for 0.001—10 um particles across
the U.S. single-family residential building stock. The model is then used to estimate the likely bounds of
size-resolved infiltration factors and to identify the most important influencing factors using best
available data for nationwide distributions of several model inputs, including air exchange rates,
envelope penetration factors, deposition rates, and others. Results suggest that size-resolved infiltration
factors vary highly across U.S. residences, which is consistent with existing experimental data. Size-
resolved infiltration factors were strongly dependent on home characteristics and were predicted to
vary by a factor of ~20 to more than 100 from the least protective of homes (99th percentile) compared
to the most protective (1st percentile), depending on particle size. These results suggest that a wide
variability in size-resolved infiltration factors among U.S. residences should be accounted for in future
epidemiology studies. This work also identifies several existing data gaps that should be addressed to
improve knowledge of size-resolved infiltration factors in homes.
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1. Introduction

Elevated ambient concentrations of particulate matter,
including PM, 5, PMyo, and ultrafine particles (UFP, <0.1 pm), are
consistently linked with adverse health effects [1—9]. These studies
typically use ambient concentration measurements from central-
site monitors. However, because Americans spend the majority of
their time indoors (and most of that time at home) [10], and par-
ticles of outdoor origin can infiltrate and persist in buildings with
varying efficiencies [11—17], relying on ambient measurements
alone can result in significant exposure misclassification for a large
portion of the population [18—21].
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Several recent studies have attempted to address this exposure
misclassification and elucidate the important determinants of the
infiltration and persistence of outdoor particulate matter into res-
idential indoor environments. One approach involves field mea-
surements of indoor and outdoor particulate matter concentrations
in a large number of residences, gathering information on home
characteristics and occupant behaviors by questionnaires and
building assessments, and using regression analyses and mass
balance principles to identify predictors of indoor—outdoor ratios
in the absence of indoor sources [22—27]. Another approach in-
volves estimating indoor exposures to ambient particulate matter
using mass balance models that incorporate more fundamental
particle transport and control mechanisms, such as particle pene-
tration factors through building envelopes, air exchange rates,
deposition rates, removal by air-conditioning systems, and human
activity patterns and behaviors [28—34].

Both approaches have shown that large variations in indoor
exposures to ambient particulate matter can result from differences
in both building characteristics such as envelope airtightness and


Delta:1_surname
mailto:brent@iit.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.buildenv.2014.01.006&domain=pdf
www.sciencedirect.com/science/journal/03601323
http://www.elsevier.com/locate/buildenv
http://dx.doi.org/10.1016/j.buildenv.2014.01.006
http://dx.doi.org/10.1016/j.buildenv.2014.01.006
http://dx.doi.org/10.1016/j.buildenv.2014.01.006

Z. El Orch et al. / Building and Environment 74 (2014) 106—118 107

human activities such as window opening. Accounting for these
variations is an important step to improve exposure estimates for
epidemiology studies. However, these same approaches are often
limited in their representative sample sizes, their assumptions for
important building input parameters, or in their focus on particular
particle classes, sizes, or chemical constituents. Therefore, this
work attempts to improve upon existing modeling approaches by
developing a Monte Carlo simulation tool for predicting the sta-
tistical distribution of time-averaged size-resolved indoor concen-
trations of outdoor particulate matter across the U.S. single-family
residential building stock. The tool utilizes a time-averaged size-
resolved particle number balance on 0.001—10 pm particles in a
well-mixed indoor environment and is integrated with best avail-
able data on influential building-related input parameters to pre-
dict time-averaged indoor proportions of outdoor particles in U.S.
residences.

Results are intended to demonstrate the likely statistical bounds
and distributions of heterogeneity in size-resolved indoor—outdoor
particle relationships (in the absence of indoor sources) across the
building stock and to provide a model framework for others to use
in future exposure and epidemiology studies as new input data are
acquired. Results from these simulations are also used to explore
the ability of the model to use outdoor particle size distributions to
predict the likely distributions of time-averaged indoor concen-
trations of particular classes of particulate matter encountered
across the building stock, including ultrafine particle number
concentrations and PM; 5 mass concentrations. Finally, this work
also highlights the importance of particular building characteristics
as determinants of particle infiltration factors, which serves to
identify data gaps in the existing literature and inform future field
studies on ongoing measurement needs.

2. Methods

Our simulations utilize a time-averaged, well-mixed number
balance to predict the proportion of outdoor particles 0.001—10 pm
in diameter found inside residences due to a combination of infil-
tration and window opening (i.e., natural ventilation) for outdoor
air exchange. Similar number or mass balance approaches have
been used in other studies [35—40], but this approach differs by
incorporating best available data for important building factors and
likely statistical distributions of window opening behaviors, central
forced-air HVAC system ownership, and HVAC filter ownership into
a large Monte Carlo simulation. The model framework and relevant
input parameters are described in the next sections.

2.1. Model framework

The long-term, time-averaged number balance on indoor par-
ticles of diameter i of outdoor origin in a well-mixed space used for
each modeled home is shown in Equation (1).

Foo— Gin _ PiA 1)
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where Fjjnf = time-averaged size-resolved infiltration factor (—);
Ciin = time-averaged size-resolved indoor concentration of parti-
cles of diameter i (#/cm?); Ciout = time-averaged size-resolved
outdoor concentration of particles of diameter i (#/cm>);
P; = time-averaged size-resolved envelope penetration factor (—);
A = time-averaged air exchange rate (AER, 1/h); kidep = time-
averaged size-resolved particle deposition rate (1/h);
Auvac = recirculation rate through a central forced-air HVAC sys-
tem, if applicable (1/h); fyvac = time-averaged fractional operation
time of the HVAC system, if applicable (—); and #n;nvac = size-

resolved particle removal efficiency of a filter installed in the HVAC
system, if applicable (—).

Terms in the numerator account for outdoor sources alone and
terms in the denominator account for a number of removal
mechanisms, including air exchange, surface deposition, and HVAC
filtration. Input parameters that are defined on a time-averaged
basis take into account both fundamental building characteristics
applicable for periods when doors and windows are closed
(referred to as ‘closed-window’ values), as well as adjusted values
of those same characteristics during periods when the building is
influenced by human interaction (primarily by altering values
during periods of open windows, which will increase air exchange
rates, penetration factors, and deposition rates).

Each modeled home is uniquely described first by estimating its
time-averaged air exchange rate (1) using Equation (2), which ac-
counts for estimates of both closed-window and open-window air
exchange rates.

A= Aclosed windows (1 _fopen windows)

+ Aopen windowsfopen windows (2)

where A¢osedwindows = the air exchange rate in a home with doors
and windows closed (1/h); Aopenwindows = the average air exchange
rate during periods of open windows (1/h); and fopenwindows = the
fraction of time windows are open (—). The fractional time of open
windows (fopenwindows) Was adjusted to account for window open-
ing only during times of mild weather, as shown in Equation (3).
This same approach has been used in other recent work [31].

fopenwindows = fmildfopenwindows,mild (3)

where filg = the fraction of time mild weather is experienced and
fopenwindows, mild = the fraction of time windows are open during
mild weather. Agpenwindows 1S based on Aciosedwindows for each home
but is adjusted for the probability that windows are open either a
low or high amount (Popenwindows,low OF Popenwindows,high) USING a
constant air exchange rate multiplier for each opening condition
(Mopenwindows,low OT Mopenwindowshigh) a5 shown in Equation (4). The
selection of AER multipliers is described in a later section.

Aopenwindows = A(:losedwindows (¢openwindows,lowmopenwindows,low

+ ¢openwindows,highmopenwindows,high>
(4)

Similar to the process for estimating time-averaged air exchange
rates, time-averaged size-resolved envelope penetration factors are
then estimated based on size-resolved penetration factors during
closed-window periods combined with the fraction of time win-
dows are open and penetration factors are higher, as shown in
Equation (5).

Pi = Pi,closedwindows (1 *fopenwindows>

+P i ,openwindowsf openwindows (5)

where P; closedwindows = the closed-window size-resolved envelope
penetration factor in a home (—) and Pjgpenwindows = the average
size-resolved penetration factor during periods with windows
open (—). Values for P;openwindows are estimated by taking into ac-
count separate values for low and high window opening conditions
as well as the probability of each opening condition, as shown in
Equation (6).
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P i,openwindows — P Lopenwindowslow¢openwindows4low
+ Pi,openwindows‘high¢openwindows‘high (6)

For high window opening conditions, P;openwindowshigh 1S
assumed to be equal to 1 for all particle sizes, which is consistent
with some previous studies [12]. For low window opening condi-
tions, Pjopenwindows,low iS estimated by taking into account both
closed-window penetration factors through infiltration and
assuming a penetration factor of 1 for any additional air exchange
provided by excess natural ventilation through open windows, as
shown in Equation (7).

P: . — P . Aclosedwindows
i,openwindows low — Lclosedwmdowsﬁ
openwindows,low

/10 enwindows,low — Aclosedwindows
+ (1) PP (7)

openwindows,low

Time-averaged values for kjgep are also adjusted in a similar
manner to account for greater particle removal during times of
window opening [41], as shown in Equation (8).

ki,dep = ki,depAclosedwindows (1 - fopenwindows)

+ ki,dep,openwindowsfopenwindows (8)

where ki dep,closedwindows = the size-resolved deposition rate in a
home with doors and windows closed (1/h) and
ki dep,openwindows = size-resolved deposition rate with windows
open (1/h). Values for k;depopenwindows are adjusted in a similar
manner as P gpenwindows DY taking into account separate values for
low and high window opening conditions as well as the probability
of each opening condition, as shown in Equation (9).

kiidep,openwindows = ki ,dep,openwindows,low ¢openwindowsilow

+ ki,dep,openwindows,high¢0penwindows,high

(9)

where ki dep openwindowslow = Size-resolved deposition rate with
windows open a small amount (adjusted for all sizes by a constant
deposition rate multiplier, «, so that k;gdep openwindows,low = Kidep,-
closedwindows) and Kidep,openwindows,high = Size-resolved deposition
rate with windows open a large amount (adjusted for all sizes by a
constant deposition rate multiplier, 8, so that k; dep,openwindows,high =
Bki dep,closedwindows). With the model framework outlined, the next
section describes how representative input values were selected for
use in the application of the model.

2.2. Values for input parameters across the U.S. single-family
residential building stock

In order to perform the Monte Carlo simulations and explore the
utility of the model, estimates were made of the likely statistical
distributions of each of the aforementioned input parameters.
These values were culled from a wide variety of sources to establish
a best estimate of the statistical distribution for each input
parameter in single-family homes across the U.S. building stock. We
have attempted to improve upon previous infiltration modeling
efforts by incorporating these input variables, most notably by
incorporating likely distributions of central HVAC system and filter
ownership; HVAC system runtime; size-resolved envelope pene-
tration factors, deposition rates, and HVAC filter removal effi-
ciencies; and increases in air exchange rates, penetration factors,
and deposition rates during periods of window opening by occu-
pants. Input data are described below, first for parameters that are

independent of particle size and second for parameters that are
size-resolved. We should note that some of these datasets remain
quite limited and may not capture the true distribution of input
values across the building stock, but the methods and results
involved are still valuable for prediction and interpretation.

2.2.1. Input parameters independent of particle size

This section first describes the collection of inputs that are in-
dependent of particle size, including air exchange rates due to
infiltration alone (Acjosedwindows), recirculation rates through HVAC
systems (Agvac), fractional operation times of HVAC systems (fyvac),
window opening behavior (fopenwindows), and increases in air ex-
change rates during window opening (Aopenwindows)-

2.2.11. Air exchange rates due to infiltration (Aclosedwindows)-
Infiltration air exchange rates (AERs) have been measured in
thousands of buildings worldwide, and have been shown to vary
widely both across buildings and temporally within individual
buildings [42—44]. Most recently, Persily et al. (2010) modeled the
statistical distribution of infiltration AERs in a sample of 209 model
dwellings that represent the majority of the U.S. residential build-
ing stock [45]. Their model predictions aligned very well with
existing measurements and provide the added benefit of spanning
such a large fraction of the building stock. A lognormal distribution
was fit to their reported percentiles by minimizing the sum of the
squared errors between their reported cumulative distribution
function and a model of a lognormal cumulative distribution
function, resulting in a geometric mean (GM) AER of 0.44 h~! (with
a geometric standard deviation, GSD = 2.04). This distribution is
shown in Fig. 1a.

2.2.1.2. Recirculation rates through central HVAC systems (Aqyac).
For the homes that were assumed to have a central HVAC system
with a filter installed, it is important to first quantify the rate of
airflow through the HVAC system relative to the volume of the
space that it serves (i.e., its recirculation rate with the HVAC system
operating). Similar studies have typically assumed values of Ayyac
[35,46]. For lack of a more robust dataset, we rely on a distribution
of actual recirculation rates measured with systems operating in 17
residential and small commercial buildings (all of which utilized
typical residential HVAC equipment) reported in Stephens et al.
(2011) [47]. A lognormal distribution of recirculation rates was fit
with a GM = 5.7 h™! (GSD = 1.26); one extreme outlier was
excluded because it represented a small, atypical office environ-
ment. This distribution is shown in Fig. 1b. These values are then
adjusted for long-term average fractional runtime, as described
below.

2.2.1.3. Fractional runtime of central HVAC systems (fgyac).
Previous similar investigations have either assumed values for
fractional operation times [36,46,48] or estimated them from
building energy models [49]. Conversely, we compiled a database of
previously measured fractional operation times in residences that
were made during a variety of heating, cooling, and mild weather
seasons for use in the simulations of homes assumed to have a
central HVAC system. We used data from 37 homes in North Car-
olina [50], 17 homes in Florida [50], and 17 homes and light-
commercial buildings Texas [47] to build a statistical distribution
that we consider generally representative for the residential
building stock. The data were lognormally distributed with a
GM = 0.246, or 24.6% of the time (GSD = 1.85). This distribution is
shown in Fig. 1c. Again, these data might not be entirely repre-
sentative of the building stock but they are considered appropriate
in the absence of more robust datasets.
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Fig. 1. Lognormal distributions of (a) infiltration air exchange rates (Aciosedwindows)» (P) HVAC system recirculation rates (Apyac), and (c) fractional HVAC system runtimes (fyvac) used
as inputs in the simulations. GM = geometric mean and GSD = geometric standard deviation.

2.2.14. Fraction of window opening (fopenwindows). Window opening
is an important behavior to capture accurately for exposure
modeling because values of air exchange rates, penetration factors,
and particle deposition rates will all increase relative to periods of
infiltration only. Therefore, we culled existing literature on window
opening behaviors in homes, giving priority to larger sample sizes.
We also assumed that window opening occurred only during mild
weather in the homes; therefore, we first fit a U.S. nationwide
distribution of fractions of the year that mild weather occurs using
data reported in Chen et al. (2012) [31], as shown in Fig. 2a. This
assumption likely leads to a somewhat conservative estimate of
periods of window openings, with the majority of homes experi-
encing mild weather between 20% and 60% of the time.

To assess the statistical distribution of window opening be-
haviors during periods of mild weather, we culled data primarily
from a large study of single-family homes across the state of Cali-
fornia [51]. We limited use of their data only to mild weather times
(i.e., spring seasons, although their fall season distributions were
very similar). For window opening fractions, we combined their
‘low’ and ‘medium’ opening characterizations into one ‘low’ win-
dow opening behavior class, which includes anywhere from only
one or two windows opened slightly to as much as one or two
windows open several centimeters. The ‘high’ window-opening
scenario was used to characterize homes with at least some num-
ber of windows or doors open fully. The distribution of the fraction
of time windows are open during mild weather is shown in Fig. 2b.

Because of the irregular shapes of the distributions for mild
weather and window opening during mild weather, data from
Fig. 2a and b were used to create a step-wise function instead of a
continuous distribution. The median fraction of time with mild
weather across the U.S. was ~31%. The median fraction of time
with windows open during mild weather was ~40%. Therefore, the
median long-term average fraction of time that windows were
open was ~ 13%, which is in a similar range as other studies on
window opening behavior [52].

2.2.1.5. Air exchange rates during window opening (Aopenwindows)-
Using data from Price and Sherman (2006) [51], we assumed that
when windows are open in a home, 20% of the time they are open
to a large extent (i.e., ‘high’ window opening) and 80% of the time
they are open to a low or moderate amount (i.e., ‘low’ window
opening). These fractions were assumed to be constant across all
homes due in part to the findings in Price and Sherman (2006) [51]
and in part to a lack of more detailed distribution data. We then
assumed values for an air exchange rate multiplier for each window
opening scenario (Mopenwindowslow and Mopenwindowshigh): We
assumed that the AER during times of low window opening was
two times higher than the home’s closed-window infiltration AER
and four times higher during times of high window opening;
therefore Mopenwindows,low = 2 and Mopenwindows,high = 4-

These multipliers are assumed constant in each home and were
derived from measurements reported in both Wallace et al. (2002)
[42] and Marr et al. (2012) [53]. Values for AER multipliers are also
similar to the mean values measured in Johnson et al. (2004) [54]
with one window open and three or more windows open, respec-
tively, as well as those utilized in Chen et al. (2012) [31]. After ac-
counting for window opening behavior during times of mild
weather, the median air exchange rate (0.44 h™!) increased to a
long-term average of 0.50 h™' (a 14% increase). The bottom
percentile of window opening increased infiltration AERs by <5%
while the top increased long-term AERs by 25% or more, considered
relative to the closed-window infiltration AER. Although these as-
sumptions may introduce considerable uncertainty, we consider
their use quite reasonable at this point in time.

2.2.2. Particle size-resolved input parameters

This section describes the collection of input parameters that are
dependent on particle size, including envelope penetration factors
(P;), indoor deposition rates (kjgep), and filter removal efficiency
(minvac), which is also based on information on central forced-air
HVAC system and filter ownership.

2.2.2.1. Penetration factors (P;). Chen and Zhao (2011) provide an
extensive review of previous measurements of size-resolved par-
ticle infiltration factors and penetration factors in residences [13].
Studies that have measured particle penetration factors in homes
vary widely in their particle sizes over which the values were
measured, as well as their sample sizes and estimates of uncer-
tainty. We have not been able to identify a particular study that
investigated the full range of particle sizes of interest (0.001—
10 pm), so we have relied on a combination of all of the previous
studies reported in Chen and Zhao [13], which summarized pene-
tration factors of 0.01—10 um measured in approximately 10 homes
in several other studies [12,14,55—57]. We also included another
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Fig. 2. Cumulative distributions of (a) the fraction of time with mild weather (fiid)
[31] and (b) the fraction of time windows are open during periods of mild weather
(fopenwindows, mild) [5]]-
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recent study in our summary [11], which also measured penetra-
tion factors of 5—100 nm particles in a test house.

There is considerable variability in these measured values of
penetration factors, depending on both individual homes and
particle sizes of interest. However, because sample sizes are small
and we lack more robust size-resolved data, we rely on an estimate
of the midpoint of the size-resolved penetration factors across any
and all applicable homes included in the review in Chen and Zhao
(2011) [13] with the addition of Rim et al. (2010) [11] to estimate
mean values of P;cosedwindows fOr each particle size. We have also
extrapolated results from 1 to 10 nm, assuming a log-linear
decrease toward zero for 1 nm particles.

Additionally, we have included a measure of likely variability in
size-resolved values for P;closedwindows Using relative standard de-
viations (RSD) from the two largest previous studies of particle
penetration factors of which we are aware. Williams et al. (2003)
reported mean (+s.d.) values for penetration factors of PM,5 of
0.724+0.21in 37 homes in North Carolina (RSD = 29%) [58]. Similarly,
Stephens and Siegel (2012) reported normally distributed values of
penetration factors for submicron particles (0.02—1 pm)with a mean
(#s.d.) of 0.47 + 0.15 in 19 homes in Texas (RSD = 32%) [ 15]. We have
therefore assumed a normal distribution with a relative standard
deviation of 30% for all of the size-resolved penetration factors uti-
lized in this study, which provides a reasonable estimate of the
statistical bounds on P; cjosedwindows in the absence of better infor-
mation. We also assume that values for every particle size increase or
decrease together in the same direction and the same relative
magnitude. The mean (+one standard deviation) size-resolved
penetration factors used in the simulations are shown in Fig. 3a.

Penetration factors during periods of window opening are
estimated according to Equations (5)—(7). In this procedure, we
assume that when windows are open a small amount (i.e., ‘low’
opening), some fraction of outdoor air still enters through the en-
velope  (Aciosedwindows/Aopenwindows,low) With the closed-window
penetration factor (P;osedwindows)- Any additional amount of out-
door air (1 — Aclosedwindows/Aopenwindows,low) 1S assumed to enter
through open windows with a penetration factor of 1. Therefore the
time-averaged envelope penetration factor will always be greater
than or equal to the closed-window envelope penetration factor.
When windows are open a large amount, we assume that the
penetration factor for every particle size is equal to unity.

2.22.2. Indoor deposition rates (kjgep). Another important size-
resolved loss mechanism in indoor environments is particle depo-
sition to indoor surfaces (kjgep). A previous size-resolved particle
infiltration modeling study estimated deposition rates using

1.0 u—

0.8 1

0.6 1

0.4 A

0.2 1

Envelope penetration factor

0.0 t t
0.001  0.01 0.1 1 10

Particle diameter (um)

physical models [35], but we rely on a range of size-resolved
deposition rates measured in real residential environments. In
one of the largest investigations of size-resolved particle deposition
rates in residences of which we are aware, He et al. (2005) reported
size-resolved measurements of k; gep in 14 homes in Australia under
two different ventilation conditions: doors and windows closed
(infiltration AER) and with some doors and windows open (natural
ventilation) [41]. The same study also reported size-resolved
deposition rates measured in several other residential studies
(mostly from U.S. homes), and noted large differences between their
measured values and others, due perhaps to differences in esti-
mation methods and/or the type of aerosol source utilized (depo-
sition rates vary according to particle density and shape). Given
these issues, we used a polynomial curve to fit the shape of size-
resolved deposition rates from He et al. (2005) [41], but adjusted
the mean values downward to better reflect the midpoint of the
size-resolved results from other studies in U.S. homes. The resulting
polynomial curve yields kjgdep,closedwindows = 1.06 + 1.83 x (log
Dp) + 1.65 x (log Dp)z, where D, is in pm. We also used the relative
standard deviations (mean RSD of ~68% across all particle sizes)
reported in He et al. (2005) [41] to establish bounds on the likely
statistical distribution of deposition rates for all particle sizes in
homes across the building stock. These values are shown in Fig. 3b.

Finally, increased AERs with windows open will increase indoor
air speeds, which will in turn increase particle deposition rates [59].
Therefore, we estimated size-resolved deposition rate multipliers
with windows open (« and () using the same data from He et al.
(2005). We used their polynomial fits for mean size-resolved
deposition rates from Figs. 3 and 4 in their manuscript for pe-
riods of windows closed and windows open, respectively. We then
calculated the ratio between k; dep,openwindows and K; dep closedwindows
and averaged the ratio across all particle size bins. The resulting
value was approximately 1.7; that is, with windows open, the mean
deposition rate across all particle sizes increased approximately
70% over that measured during periods with windows closed. Thus
we assume that § = 1.7 with windows open a large amount.
Additionally, we estimated that « = 1.23 for periods with windows
open a small amount, based on an assumed linear relationship
between deposition rates and air exchange rates (AERs were esti-
mated as two times higher with windows open a low amount and
four times higher with windows open a large amount; thus
a=(2-1)/(4 -—1) x 8 =123). We should note that this method
might not accurately capture the true variability of open window
deposition rates across the building stock, but these assumptions
are still appropriate for the purposes of this work in the absence of
more robust data.
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Fig. 3. Size-resolved (a) particle penetration factors (P;ciosedwindows) and (b) deposition rates during periods of closed-window infiltration (k;dep,closedwindows)- Black lines represent
mean values and gray lines represent + one standard deviation. Mean deposition rates are estimated as follows: k;gep,closedwindows = 1.06 + 1.83 x (log D,) + 1.65 x (log Dp)z.
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Fig. 4. Size-resolved particle removal efficiency (niuvac) for the five classifications of
filters used in this study: MERV <5, MERV 6, MERV 8, MERV 12, and MERV 16.

2.2.2.3. Filter removal efficiency (n;). The presence and use of air-
conditioning and forced-air heating has been shown to be a sig-
nificant predictor for particulate matter infiltration factors in field
studies [23,25,60,61]. This decrease is likely attributed in part to
particle filters installed in HVAC systems; even if a very low effi-
ciency filter is used, HVAC filters can increase indoor particle loss
rates due to typically large recirculation rates through HVAC sys-
tems [49,62]. Higher efficiency filters intuitively have a greater ef-
fect [63—65]. A wide range of particle filters exist in the residential
market, so it is necessary to understand both (i) the removal effi-
ciency of a range of commonly available HVAC filters and (ii) HVAC
filter ownership across the building stock in order to estimate the
impacts that HVAC filtration likely has on size-resolved particle
infiltration factors in U.S. residences. We ignore deposition to HVAC
ductwork surfaces for lack of more robust data from measurements
in real homes [66,67]. We also ignore the use of any portable air
cleaners for this effort.

HVAC filters are typically tested for particle removal efficiency
only in laboratory settings. ASHRAE Standard 52.2 is the most
commonly used test standard in the U.S [68]. The standard assigns
filters a Minimum Efficiency Reporting Value (or MERV) according
to the ability of the filter to remove 0.3—10 pm particles. However,
to extend the particle size range below 0.3 pum, we utilize poly-
nomial fits for recent measurements of size-resolved particle
removal efficiency reported for a range of commercially available
HVAC filters in Hecker and Hofacre (2008) [69], which reported
removal efficiencies for particles as small as 0.03 um. Additionally,
particle removal efficiency values for the lowest efficiency filters
(MERV <5) were taken from Waring and Siegel [46]. Size-resolved
HVAC filter removal efficiencies for five broadly representative
classes of filters are shown in Fig. 4.

2.2.2.4. HVAC system and filter ownership. Surprisingly little infor-
mation exists on the distribution of types of filter ownership across
the residential building stock. In a survey of 17 homes in Austin, TX
with central HVAC systems, Stephens and Siegel (2012) observed
the following distribution of installed HVAC filter types: five homes
utilized MERV <5; nine homes utilized MERV 6—8; two homes
utilized MERV 11-12; and one home utilized MERV 16 [15]. In a
survey of three pilot test homes, Offermann (2009) reported that
two utilized MERV 6 filters and one utilized a MERV 8 filter [44]. A
conversation with an anonymous contact in the residential filtra-
tion industry confirmed that ~75% of their filter sales were MERV 7
or lower. Therefore, we assumed a distribution of HVAC filter
ownership in U.S. single-family residences, as shown in Table 1. This
assumed distribution should be interpreted with some caution, but
we are not aware of more reliable information at this time.

Table 1
Estimate of HVAC filter ownership across the residential
building stock (for homes with HVAC systems).

Filter type % Ownership
MERV < 5 25%
MERV 6 30%
MERV 8 30%
MERV 12 10%
MERV 16 5%

Differences in removal efficiencies between adjacent MERV cate-
gories are often small, so only five representative filter types were
assumed.

2.3. Monte Carlo simulations

A Monte Carlo approach was used to predict the likely distri-
bution of size-resolved infiltration factors in single-family resi-
dences across the U.S. building stock and to demonstrate the utility
of the model framework using the aforementioned statistical dis-
tributions of each input parameter. Similar approaches have been
used in other recent indoor air quality investigations [70—72]. A
total of 100,000 simulations were performed for individual geo-
metric mean (GM) particle diameters for 102 bins between 0.001
and 10 um. Because approximately 65% of residences in the U.S.
have central HVAC systems [73], 65,000 simulation cases were
assigned an HVAC system; the other 35,000 were assumed to have
no central HVAC system. The number of simulations was chosen
such that the smallest group of simulated homes (those with MERV
16 HVAC filters) was still large enough to capture a wide range in
predicted values and achieve repeatable results (n = 3250 for MERV
16). Simulations were performed in MathWorks MATLAB R2012a.

Each simulation began by sampling size-independent parame-
ters randomly from the distributions in Fig. 1. Closed-window
values for size-resolved deposition rates and penetration factors
were also randomly sampled from the individual distributions in
Fig. 3 (and scaled in the same direction and relative magnitude for
each particle size for each percentile). Values for penetration fac-
tors, filter removal efficiencies, and HVAC system runtimes were
bound between 0 and 1. Deposition rates were bound to values
greater than zero. At this point, each modeled home was uniquely
identified in the simulations with these closed-window building
characteristics. Subsequently, the time-averaged fractions of mild
weather, fraction of window opening, and type of filter used (if the
home had an HVAC system) were sampled at random according to
the distributions in Fig. 2 and the likelihood of HVAC filter
ownership in Table 1.

Each parameter was assumed to be independent of all other
parameters, which may not be an entirely realistic assumption. For
example, closed-window envelope penetration factors were
recently shown to be correlated with AER [15], which, if accounted
for, would likely extend both the upper and lower bounds of our
model results. However, the relationships between many of these
parameters are not yet well known, particularly on a size-resolved
basis. Additionally, there is some evidence that occupants may be
more likely to open windows in homes without central HVAC
systems during a wider range of seasons [52], but unfortunately we
cannot account for this because we are not aware of robust data on
these relationships.

Subsequently, time-averaged AERs, penetration factors, and
deposition rates were estimated according to Equations (3)—(9).
Finally, each sampled time-averaged input parameter was used to
estimate the time-averaged indoor proportion of outdoor particles
of diameter i in each simulated home according to Equation (1).
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Results were then explored in order to predict the likely distribu-
tion of size-resolved infiltration factors across the U.S. single-family
residential building stock using these best available data. Results
were also used to predict the likely distribution of absolute number
concentrations of indoor particles of outdoor origin across the
building stock, as well as indoor UFPs and PM, 5 of outdoor origin,
based on assumptions for time-averaged outdoor particle size
distributions, particle shape, and particle density. Finally, a sensi-
tivity analysis was performed by using a multiple linear regression
with the input and output data for each particle size in order to
demonstrate the most influential parameters governing size-
resolved infiltration factors.

3. Results and discussion
3.1. Distributions of predicted size-resolved infiltration factors

Estimates of the likely distribution of time-averaged size-
resolved infiltration factors (Fijnr) across the U.S. single-family
residential building stock made using the model framework are
shown in Fig. 5. Seven percentiles are shown based on the results
from the 100,000 simulations, spanning a range from the 1st
percentile to the 99th percentile. Minimum and maximum values
are excluded for clarity.

For some particle sizes in Fig. 5, Fjjnf are estimated to vary by a
factor of ~20 to more than 100 from the 99th percentile to the 1st
percentile, with an average of ~60 across all particle sizes between
these two percentiles. Differences within the interquartile range
are not as stark but are still meaningful and likely important to
capture: the 75th percentile F; iy is typically between a factor of 2—
4 greater than the 25th percentile (with a mean of ~3.1 across all
particle sizes). Overall, these results suggest that indoor concen-
trations of outdoor particles can vary highly among residences
across the U.S. building stock, particularly between the most pro-
tective homes and the least protective homes and depending in
large part on particle size.

To aid in the interpretation of the size-resolved results and aid in
future binned analyses, these same data are also shown averaged
over seven particle size bins. Box plots of their distributions are
displayed in Fig. 6. The size bins included: <0.01 pm, 0.01—-0.05 pm,
0.05—0.10 pm, 0.1-0.5 um, 0.5—1 pm, 1-5 um, and 5—10 pm.

According to Fig. 6, we estimate that 0.1-0.5 um particles of
outdoor origin are most likely to exist indoors in the greatest
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Fig. 5. Estimate of the distribution of time-averaged size-resolved infiltration factors
(Fiinf) across the U.S. single-family residential building stock resulting from the
100,000 simulations.
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Fig. 6. Box plots of predicted time-averaged infiltration factors (Finf) across the U.S.
single-family residential building stock, averaged over seven particle size bins. Boxes
represent the interquartile range (IQR) and whiskers represent adjacent values (i.e.,
those within 1.5 times the IQR). Outliers are excluded for clarity.

numbers (Fp1—0.5,inf: GM = 0.29; GSD = 1.94), followed by 0.5—1 um
particles (Fos5-1inf: GM = 0.25 and GSD = 2.05). This is intuitive
because most of the fundamental forces that govern particle
removal are typically weakest for 0.1-0.5 pm particles [74,75].
Larger particles (i.e., 1-5 pm and 5—10 pm) are estimated to have
lower time-averaged values of Fijnr (Fi—sinff GM = 0.13 and
GSD = 2.38; F5_10inf: GM = 0.07 and GSD = 2.63). Finally, values of
Fiinf for ultrafine particles are also estimated to be lower than 0.1—
1 um particles (Fop5—01inf: GM = 0.20 and GSD = 2.12; Fy,01-0.05,inf:
GM = 0.10 and GSD = 2.37; and Fygo1-001,nf: GM = 0.01 and
GSD = 2.92). Estimates of F; jor in both Figs. 5 and 6 also show thatin
some homes indoor proportions of outdoor particles are very small
or even negligible, particularly for the bottom percentiles.
Conversely, values of F;jyr for some particle sizes may approach
unity for some homes in the 99th percentile or above.

To provide some comparison to existing measurements, other
studies have measured similar distributions of Fjj,r for particle
number concentrations in homes, although large samples seldom
include size-resolved measurements. For example, Kearney et al.
(2011) measured values of Fiyf for submicron (non-size-resolved)
particles in over 40 homes in Windsor, Ontario ranging from ~0.03
to ~0.9 with a median of ~0.19—0.27 depending on season and
estimation method [16]; our model results for submicron particles
are generally in line with these measurements (Fig. 6), although
exact comparisons cannot be made because particle size distribu-
tions were not measured in their work. Similarly, Bhangar et al.
(2011) estimated values of Fiyf for submicron particles from ~0.1 to
~0.5 in seven homes in California; again, our results align generally
in this range but an exact comparison cannot be made in the
absence of knowledge on their size distributions [76].

Comparing our results to a very limited number of size-resolved
field measurements, our modeled 25th to 50th percentile size-
resolved UFP estimates follow a similar pattern to those
measured in Rim et al. (2010) inside a test house with closed
windows, with an average F;inf for 0.1 pm particles near ~0.2 and
declining towards less than 0.05 for 0.005 pum particles [11]. Simi-
larly, the 75th to 90th percentiles in this work follow a similar
profile to those in Rim et al. (2010) measured with windows
opened, with an average F;;nr for 0.1 um particles near ~0.4 and
declining towards less than 0.2 for 0.01 pm particles [11]. These
results provide some validity to our approach as the test home in
Ref. [11] was of moderate airtightness [77], estimated to be
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approximately within the 50th to 75th percentile of homes across
the U.S. according to blower door results [78]. Our modeled results
for the 75th to 90th percentiles values of Fjj,r for 0.01-0.2 pm
particles also follow a similar trend to those measured in several
apartment units in Zhu et al. (2005), particularly for one home with
an HVAC system operating [12].

3.2. Mapping to outdoor particle size distributions

We here show an example of how these size-resolved estimates
of time-averaged infiltration factors can also be used to estimate
the indoor size-resolved indoor number concentrations based on
particle size distributions for any outdoor environment. If particle
densities are also known, estimates of absolute indoor proportions
of outdoor particulate matter mass (e.g., PMy 5 or PM1p) can also be
made, as we will demonstrate. Data for long-term time-averaged
size-resolved outdoor size distributions and particle densities are
limited in the U.S.; therefore, we rely on previous measurements of
outdoor particle size distributions in a variety of outdoor environ-
ments from one of the longer term studies of which we are aware in
order to illustrate the likely bounds on distributions of indoor
particulate matter of outdoor origin (specifically PM; 5 and total
UFPs).

The used dataset includes long-term outdoor data from three
sites in and around Leipzig, Germany [79], including: (1) a rural
background site approximately 50 km from Leipzig; (2) an urban
background site on the roof of a university building within the city
approximately 100 m from highly-trafficked roads; and (3) an area
near a moderately-trafficked roadway near the city center (carrying
approximately 12,000 vehicles per workday). These locations each
have unique particle size distributions, which we herein call (1)
rural, (2) urban background, and (3) urban traffic. We are not aware
of similar long-term measurements in locations in the U.S., other
than shorter term measurements in Los Angeles, CA and Pittsburgh,
PA that were made during sampling campaigns at two EPA Super-
site locations [80], although others may exist.

Mean and standard deviation particle size distributions re-
ported in Costabile et al. (2009) were fit using a lognormal distri-
bution with three modes [79]. Distribution statistics are shown in
Table 2 and the long-term average outdoor particle size distribu-
tions are also shown graphically in Fig. 7. Only the arithmetic mean
distributions are utilized herein for the long-term average. The
urban and rural distributions used herein [79] were quite similar in
both magnitude and shape as long-term measurements in the
previously mentioned Pittsburgh field study [81].

Estimates of PM; 5 mass concentrations for each outdoor loca-
tion are also given in Table 2; these were determined by assuming
spherical shape particles and a particle density of 1.0 g/cm® [35,46].
Estimates for long-term average outdoor PM,s5 concentrations
were as follows: PMy 5 rural = 13.2 pg/m>; PMa 5 urpan = 15.0 pg/m?;
PM3 5 traffic = 17.5 pg/m>. Time-averaged outdoor concentrations of
UFPs and total particles were estimated as ~4200 #/cm® and
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Fig. 7. Mean outdoor particle size distributions from three different environments in
and around Leipzig, Germany reported in Costabile et al. (2009) [79].

~5600 #/cm? in the rural environment, ~9340 #/cm? and ~ 11500
#/cm’ in the urban background environment, and ~ 19780 #/cm>
and ~22900 #/cm? in the urban traffic environment.

The outdoor particle size distributions from each of the three
locations are then used alongside the F;jyr distributions in Fig. 5 to
predict the distribution of time-averaged indoor concentrations of
outdoor size-resolved particles, assuming each home is subject to
the same outdoor size distribution. The results, shown in Fig. 8, are
instructive for exploring how much indoor concentrations of out-
door particles can vary according to differences in outdoor particle
size distributions. We did not attempt to assign rural, urban, and
urban traffic environments to particular subsets of the predicted
distributions based on geography, largely because we do not have
enough data on input parameters to divide the modeled homes
regionally.

In addition to size-resolved estimates, data from Fig. 8 can also
be used to estimate indoor concentrations of PM> 5 and total UFPs of
outdoor origin on an absolute basis in each location, as shown in
the cumulative distribution functions in Fig. 9. Estimates of PM; 5
mass concentrations are made using the same assumptions for
spherical particle shape and unit density as in Table 2. The pre-
dicted distributions of absolute indoor PM, 5 and total UFP con-
centrations are also used alongside long-term time-averaged
outdoor estimates (made using the same particle assumptions) to
estimate infiltration factors for PM, 5 and UFPs. The intent of this
example is to explore sensitivity of the results to widely varying
assumptions of outdoor particle size distributions.

According to Fig. 9a, time-averaged indoor PM; 5 concentrations
of outdoor origin are not predicted to vary greatly between each
environment, although urban traffic areas are estimated to have
higher indoor concentrations than urban or rural locations. The

Table 2
Lognormal characteristics of the ambient particle size distributions used in this study as representatives for typical rural, urban background, and traffic environments.
Location Mode 1 Mode 2 Mode 3 Est. PMy 5 Total Total
mass UFPs N
Ni Dyi @ Ni Dpi @ N Dyi @ pg m-3 #cm—3 #cm>
cm—3 um - cm3 um - cm—3 um —
Rural Mean 2200 0.014 0.30 2800 0.070 0.30 600 0.200 0.23 13.2 4204 5600
s.d. 5000 0.011 0.28 2500 0.050 0.40 650 0.230 0.17 15.2 6944 8150
Urban background Mean 2600 0.014 0.30 8200 0.048 0.36 700 0.170 0.20 15.0 9340 11500
s.d. 3600 0.010 0.27 6200 0.048 0.36 600 0.170 0.20 11.8 8709 10400
Traffic Mean 11500 0.013 0.24 10000 0.050 0.35 1400 0.150 0.18 17.5 19780 22900
s.d. 13500 0.012 0.27 5000 0.050 0.35 1200 0.150 0.23 13.6 17787 19700
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Fig. 8. Distributions of time-averaged indoor concentrations of outdoor particulate matter estimated using values of F;j,r from Fig. 5 and outdoor size distributions from Fig. 7.
Estimates are made assuming all homes are located in (a) rural, (b) urban background, or (c) highly-trafficked urban locations.

median predicted indoor concentration of PM; 5 of outdoor origin
in the urban traffic environment is approximately 7 pg/m3
compared to 5.8 ug/m?> in the urban environment and 5 pg/m° in
the rural environment. Conversely, absolute concentrations of UFPs
are predicted to vary widely depending on environment, as shown
in Fig. 9c. For example, if the median home is located in the urban
traffic environment, time-averaged indoor UFP concentrations of
outdoor origin would be ~1730 #/cm? compared to ~ 1070 #/cm>
and ~460 #/cm’ in the urban and rural locations, respectively (a
factor of almost 4 between urban traffic and rural!). This difference
in indoor concentrations is due to the large differences in outdoor
UFP concentrations in each environment, as described in Table 2.
On the other hand, infiltration factors of both PM, 5 and UFPs do
not appear to be affected greatly by assumptions for outdoor
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particle size distributions (see Fig. 9b and d). Outdoor particle size
distributions appear to have almost no impact on the cumulative
distributions of F;nf values for PMy 5 while F;n¢ values for UFPs are
actually somewhat smaller for the urban traffic environment, most
likely because a greater number of UFPs are smaller than 0.05 pm
and predicted infiltration factors are less for <0.05 pm particles
than for 0.05—0.1 pm particles (Fig. 6). While this analysis suggests
that outdoor particle size distributions may not drastically affect
infiltration factors for PM; 5, which may be an important finding for
informing future field studies, we should note that these results are
limited in this example to our assumptions for both outdoor par-
ticle size distributions and particle shape and density. For instance,
although we use a density of 1 g/cm® herein, other recent studies
have shown that actual particles densities can range from 0.1 to
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Fig. 9. Estimated cumulative distributions of (a) indoor PM, 5 concentrations, (b) Fi¢ for PMy 5, (¢) indoor UFP concentrations, and (d) F;in¢ for UFPs using the modeled indoor size
distributions in Fig. 8 and assuming spherical particles with density of 1 g/cm? to estimate PM, 5 mass.
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2.5 g/em?, depending on geographic location and characteristics of
nearby particle sources [81—87]. These impact of these assump-
tions could, however, be explored further using the size-resolved
predictions of F; iy in Fig. 5.

The predicted ranges of F;inf values for both PM, 5 and UFPs
using this method are somewhat lower than most of the existing
experimental data in homes. For example, we predict median F; jnf
values for UFPs to range from ~0.08 to ~0.11, depending on out-
door particle size distributions, while median values for submicron
particles (thought to largely represent UFPs) in Kearney et al. (2011)
were ~0.19 to ~0.27, depending on season and estimation method
[16]. Our predicted interquartile ranges (25th to 75th percentiles)
of F;inf for UFPs ranged from ~0.05 to ~0.20, depending on loca-
tion, which was on the lower end of those observed in both [16] and
[76]. Similarly, our predicted median values of F;nr for PMy 5 were
approximately 0.28—0.29 depending on assumptions for outdoor
size distributions, which is lower than typical medians or means
ranging from ~0.35 to ~0.8 measured using several different
methods across many different homes in both the U.S. and Canada
[19,23,27,58,88,89]. However, our median estimates of F;j,r for
PM, 5 are very close to that measured in nearly 50 homes in
Windsor, ON across multiple seasons [24]. However, we should
note that there are many factors that lead to difficulty in providing a
direct comparison to existing field studies, including typically
limited sample sizes, durations, and locations in most of the
existing field studies as well as limitations in our assumptions for
particle size distributions and statistical distributions of input
parameters.

3.3. Multiple regression analysis for influential parameters

In order to explore the most influential input parameters for
predicting size-resolved infiltration factors in this model frame-
work, this section summarizes results from a multiple linear
regression on all 100,000 modeled values of F; ¢ for each of the 102
particle size bins. Three separate regressions were performed,
including (i) all results from the 100,000 simulated homes, (ii) only
the results from the 35,000 simulated homes without HVAC sys-
tems, and (iii) only the results from the 65,000 simulated homes
with HVAC systems. Seven model input parameters were used as
predictor variables, including closed-window penetration factors
(Pi closedwindows), deposition rates (k;dep,closedwindows), and air ex-
change rates (Aclosedwindows); HVAC filter efficiency (7;nvac); HVAC
recirculation rate (Agvac); HVAC system runtime (fgvac); and the
fraction of time windows are open (fopenwindows)- Only the closed-
window values were used for the relevant input parameters
because their time-averaged values are a function of another

predictor variable (fopenwindows).- The regression analysis followed
the format in Equation (10).

Fi,inf = 60 + ﬁl Aclosedwindows + ﬁzfopenwindows + ﬁBfHVAC
+ Banvac + BsMinvac + ﬂ6ki,dep,closedwindows
+ 57Pi,closedwindows (10)

To normalize and compare the strength of each predictor vari-
able, we used the standardized regression coefficient (SRC), which
is the actual regression coefficient (;) normalized by the ratio of
the sample standard deviation of the dependent to independent
variables [90]. SRCs can be interpreted as follows: (i) the (SRC)?
estimates the relative variance contribution; (ii) a high |SRC| in-
dicates a large influence, while an |SRC| near zero indicates no in-
fluence; and (iii) an input with a —SRC changes the F;jyr negatively
and a +SRC changes F;inr positively. Fig. 10 shows size-resolved
SRCs for each predictor variable used in the regression analysis
and Table 3 shows mean (4s.d.) values for the SRCs for all three
regression analyses averaged across all particle sizes, ranked in
descending order of influence. Finally, Fig. 11 shows the size-
resolved model R? values for each regression.

Size-resolved closed-window deposition rates  (kjdep,clo-
sedwindows) were shown to be the most influential parameter for
predicting size-resolved infiltration factors in these simulations for
all three regression analyses, explaining 28—42% of the variance
among homes on average across all particle sizes (mean SRC
of —0.56). Closed-window air exchange rates (Aclosedwindows) Were
the next most important predictor across all particle sizes for all
three regression analyses, followed by closed-window envelope
penetration factors (P;closedwindows). However, closed-window
penetration factors had a slightly greater impact than closed-
window AERs for some particle sizes in some subsets of homes
(i.e.,, 0.1-0.5 pm particles in homes without HVAC systems). The
importance of these three parameters is expected given their large
ranges as inputs to the model. The influence of penetration factors
is smallest for the smallest particles, most likely because the range
of input values for particles less than ~0.02 pm is very small. SRCs
for AERs and deposition rates do not vary as much by particle size
because their ranges of input values also do not vary as much by
particle size as penetration factors do. Unfortunately many of these
assumptions cannot be explored further, as existing experimental
data is quite limited.

HVAC filter removal efficiency (niuvac) was the next most
important predictor for homes across all of the homes, as well as for
those homes with HVAC systems. The fraction of time that win-
dows are open (fopenwindows). HVAC system runtime (fgvac), and
recirculation rates (Ayyac) were all only minor predictors for all
three cases, with SRCs less than +0.11, suggesting that the
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Fig. 10. Size-resolved standardized regression coefficients (SRCs) for predictor variables in multiple regression analyses: (a) all homes, (b) homes without HVAC systems, and (c)

homes with HVAC systems.
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Table 3

Mean + standard deviation of the standardized multiple linear regression co-
efficients for each input variable for (i) all homes, (ii) only those homes without
HVAC systems, and (iii) only those homes with HVAC systems.

Input parameter Mean =+ s.d. standardized regression

coefficients (SRCs) across all particle sizes

All homes No HVAC HVAC

Closed-window —0.56 + 0.03 —0.65 + 0.03 —0.53 + 0.03

deposition rate, k;dep,closedwindows

Closed-window air 0.42 + 0.06 0.35 + 0.07 0.49 + 0.04
eXChange rate, }\closedwindows

Closed-window 0.30 + 0.09 0.30 &+ 0.10 0.31 + 0.08
penetration factor, P; ciosedwindows

HVAC filter efficiency, 7iuvac —0.21 4 0.05 Omitted —0.20 £+ 0.07

Fraction of time 0.09 + 0.05 0.08 + 0.05 0.11 4+ 0.06
windows are open, fopenwindows

HVAC system runtime, fyvac —0.06 + 0.01 Omitted —0.10 + 0.01

Recirculation rate, Ayyac —0.04 4+ 0.00 Omitted —0.06 £+ 0.01

contribution to the variance of the results was less than 1.2% (or
0.11%). However, window opening was a greater predictor for the
smallest UFP sizes (i.e., <0.01 um), explaining as much as ~15% of
the variance for very small particles. This is intuitive, as open
windows will have a large relative influence on the very small
closed-window penetration factors for the smallest particles.

Each parameter was also found to influence infiltration factors
in a logical manner; that is, deposition rates (a loss term) were
negatively associated with values of F;nf, while penetration factors
(a source term) were positively associated with values of F; j,r. These
results suggest that in order to better estimate size-resolved infil-
tration factors in field studies and to incorporate into future
epidemiological studies, accurate characterization of size-resolved
deposition rates, closed-window air exchange rates, and size-
resolved envelope penetration factors should be prioritized, fol-
lowed by size-resolved HVAC filter efficiencies for homes with
HVAC systems and window opening behaviors for homes without
HVAC systems. Although we are aware of large datasets for resi-
dential air exchange rates, information is particularly lacking on
size-resolved deposition rates, size-resolved envelope penetration
factors, and in-situ HVAC filter efficiencies across the wide range of
particle sizes considered herein.

Values for the coefficient of determination (model R? values)
ranged from 0.32 to 0.77 depending on particle size, suggesting the
multiple regressions predict size-resolved infiltration factors for
some particle sizes better than others across all modeled homes.
The mean (+s.d.) R? value was 0.65 + 0.11 across all particle sizes,
with the highest values associated with 0.1—1 um particles, perhaps
because there are mostly nonzero values associated with size-
resolved input parameters for this size range. Model R? values

1.0

0.8
g TR
S 06 \\\
2
g 04 4 = All homes
2 No HVAC

0.2 1 HVAC

0.0 f t t
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Fig. 11. Model R? values for the multiple linear regressions for each particle size.

were also generally higher for the regression analysis using only the
homes with HVAC systems, which suggests that the range of inputs
used herein can better predict size-resolved infiltration factors in
homes with central HVAC systems and filters.

4. Implications and limitations of this work

Overall, results from the application of the model framework
and Monte Carlo simulations herein using best available data for
important input parameters suggest that indoor proportions of
outdoor size-resolved particles, UFPs, and PM; 5 can vary widely
among homes due to wide ranges of fundamental, influential
building characteristics, which is consistent with limited experi-
mental data in the literature. Importantly, this wide variability in
size-resolved infiltration factors among U.S. residences should be
accounted for in future epidemiological studies to limit exposure
misclassification. Additionally, measured data for a number of key
input parameters that could be used in similar size-resolved
modeling efforts to improve epidemiology studies are severely
lacking, and this work helps to prioritize measurements of a
number of important parameters and building characteristics that
govern outdoor particle infiltration in residences.

However, we should also note that there are several important
limitations to this work. For one, actual measured values of both
size-resolved envelope penetration factors and particle deposition
rates remain very limited. More research should measure size-
resolved particle penetration factors and deposition rates across
the widest size range possible and in a larger number and variety of
residential buildings. Results from the multiple linear regressions
confirm the importance of both of these variables, as well as the
importance of accurately assessing air exchange rates. Additionally,
data for HVAC system runtimes, size-resolved filter efficiencies,
filter ownership, window opening behaviors, and AERs during
window opening all remain limited and warrant further study.

We should also note that there might be considerable uncer-
tainty in the shape of the outdoor particle size distributions we
used in the latter portion of this analysis. More information is
needed on long-term time-averaged outdoor particle size distri-
butions in urban, rural, and highly trafficked urban environments in
the U.S. to fully explore the impacts of outdoor size distributions.
Moreover, the particle number balance in Equation (1) ignores
other loss mechanisms such as loss of particles by partitioning of
semivolatile compounds (e.g., for organic nitrate particles or sec-
ondary organic aerosols), which can alter indoor size distributions
and mass concentrations [12,30,33,91,92]. However, the wide range
in deposition rates used herein should capture much of the vari-
ability that would be introduced by particle volatility. Additionally,
this work focused on infiltration factors and explicitly ignores in-
door sources of particles. There are many indoor sources of a wide
range of particle sizes inside homes that lead to significant expo-
sure [93,94]. Further modeling should incorporate size-resolved
source strengths and time activity patterns.

Regardless, results herein demonstrate the utility of this model
framework and suggest that wide variations in indoor particle
concentrations (and thus exposures) exist across the U.S. residential
building stock. Additionally, these variations may be predicted with
some confidence by differences among home characteristics, which
should be accounted for in epidemiological studies. Although more
information is needed on a wide range of fundamental building-
related input parameters, the modeling framework described
herein can also be used to incorporate new data as they are
revealed or to explore hypothetical changes to the building stock,
such as widespread decreases in AERs due to weatherization or
increases in ownership of higher-efficiency HVAC filtration.
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